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Abstract. Using the electric field determined in our generalized Bardeen–Stephen model, we
investigate the entropy flow in the vicinity of a moving vortex core. We show that excited
quasiparticles around the vortex core can be driven from the trailing to the leading edge of the
core due to the electric force field generated by the vortex motion. From the fact that excited
quasiparticles can carry entropy, we determine the rate of the entropy flow and the temperature
difference between the trailing and leading edges. These quantities are in qualitative agreement
with those of the Clem model.

1. Introduction

A correct account of the energy dissipation in a moving vortex is essential for understanding
vortex dynamics. Bardeen and Stephen (BS) [1] and Nozières and Vinen (NV) [2] proposed
two of the most widely studied classical models for the dissipative vortex dynamics.
However, these models show discordant characteristics, e.g. inconsistent results on the
normal core current [3] and the Hall angle, demanding further investigation. In an attempt to
resolve the above-mentioned contradictory features of these models, we studied the normal
core current of a moving vortex previously [3, 4]. In our earlier microscopic work [4]
based on the Bogoliubov–de Gennes formalism and the Galilean unitary transformation, we
determined the normal core current and the drag force associated with the uniform vortex
motion. In other work based on superfluid hydrodynamics [3], we investigated the BS
model which is based on the local London theory. By including the contribution from
the nonlinear convective derivative (NCD) in the Euler equation to the force field, we
generalized the BS model and obtained a core electric field identical to that of the NV
model.

Aside from the BS model and the NV model, another important model for the dissipative
vortex motion was proposed by Clem [5]. In order to explain the temperature dependence
of the flux flow resistivity, Clem argued that entropy increases at the leading edge of
the core where the superconducting region converts to a normal one, and that the reverse
occurs at the trailing edge. Thus he proposed that there is irreversible entropy flow from
the trailing to the leading edge of the moving vortex core. He also determined the local
temperature gradients associated with this transverse [6] entropy flow in the vicinity of the
core. The leading edge was found to be cooler than the trailing edge. The above-described
temperature gradients give rise to dissipation through irreversible entropy production [7]
proportional to the second power of the vortex velocity. This dissipation of the Clem
model due to the transverse flow of entropy looks different from that of the BS model
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which is due to the longitudinal (parallel to the transport current) flow of the normal
core current. However, it is not clear to what extent these mechanisms of dissipation
are additive and to what extent they simply provide alternate ways of looking at the same
phenomenon [8].

In this paper, we explain the physical origin of the transverse entropy flow in the Clem
model by using our generalized BS model [3]. From the classical hydrodynamic study of
the superfluid in our generalized BS model, we obtained a force field different from that
of the BS model in the vicinity of a moving vortex core; i.e. in addition to the dipolar
electric force field of the BS model, there exists a contribution from the NCD in the Euler
equation. Accordingly, excited quasiparticles driven by this force field will show a flow
pattern different from that of the BS model. In section 2, we show that the additional force
field due to the NCD generates transverse normal currents (flows of excited quasiparticles)
from the trailing to the leading edge of the core. Using these transverse normal currents
and the fact that excited quasiparticles can carry entropy [9, 10], we determine the rate of
transverse entropy flow in section 3. While the entropy flow in the Clem model is due to
the temperature gradients (thermal force), it is driven by the electric field associated with
the vortex motion in our generalized BS model. Thus we convert our electric transverse
force into equivalent thermal gradients in order to compare with the Clem model. The
temperature difference between the trailing and the leading edges, which is determined
from this effective thermal gradient, is found to be in qualitative agreement with that of the
Clem model.
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Figure 1. The geometry used in this work.
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Figure 2. The electric field(e/m)ENCD . The length of each arrow is proportional to the
strength of the local field.

2. Normal core currents in the generalized BS model

According to our generalized BS model [3], the electric field outside the normal core of a
moving vortex can be expressed in terms of the superfluid velocity field as

e

m
E1 = −vL · ∇vs0+∇(vs0 · vs1). (1)

Herem and e are electron’s mass and charge, whilevL and vs0(r) denote the uniform
velocity of the vortex and the diamagnetic supercurrent field circulating around the core
respectively, as depicted in figure 1.vs1 is the leading-order correction to the superfluid
velocity field due to the vortex motion and the transport current. We can writevs1 as the
sum of the velocity fields for the transport current and the backflow [2]:

vs1 = vT + vB. (2)

From the definition of the backflow, we notice thatvT is larger thanvB except in the region
near the core boundary,r ' a, wherea is the radius of the core. Thus we approximate

∇(vs0 · vs1) '∇(vs0 · vT )+O

(
a2

r2

)
(3)

and rewrite equation (1) as
e

m
E1 ≡ e

m
EBS + e

m
ENCD (4)

where
e

m
EBS ' −vL · ∇vs0 e

m
ENCD '∇(vs0 · vT ).

Here(e/m)EBS is the dipolar force field of the original BS model [1], and(e/m)ENCD is
the additional field originating from the NCD in the Euler equation. The physical origin of
(e/m)ENCD is the anisotropy caused by the transport current in the superfluid velocity field
of the vortex. The excited quasiparticles existing outside the normal core are driven by this
force field in equation (4). Using the London relation,Jn = nn(T )evn = σnENCD, where
nn(T ) is the temperature-dependent density of excited quasiparticles andσn is the normal
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conductivity, we determine the velocity field of the excited quasiparticles outside the core
due to(e/m)ENCD as

vn = eτ

m
ENCD ' h̄τvT

2mr2
[−2(sinθ)(cosθ)x+ (cos2 θ − sin2 θ)y] (5)

where τ is the mean free scattering time of excited quasiparticles andθ the angle with
respect tox. As depicted in figure 2, this velocity field describes the transverse flow of
excited quasiparticles flowing from the trailing to the leading edge of the core.

Figure 3. The normal core current due toeEc. Solid (dashed) lines represent the transverse
(longitudinal) core currentvcy (vcx ).

In our earlier work [3], we also determined the electric field inside the normal core:

eEc = e

2πa2c
(2vT − vL − vc)× φ (6)

wherevc is the velocity of the normal core current. Using this field, we set up a force
balance equation for the normal charge carriers in the vortex core. For most of dirty type II
superconductors withωc2τ � 1, whereωc2 is the cyclotron frequency at the upper critical
field Hc2, we determined the normal core current as

vc = vcxx+ vcyy (7)

where

vcy = 1
2βωc2τ(2vT )+O((ωc2τ)

2)

vcx = 1
2ωc2τvL.

Here β is a phenomenological constant associated with the ratio between the effective
pinning forcefp and the Lorentz forcefLorentz:

β = 1− 2πa2c

e

γ ′vL
2vT φ

= 1− fp

fLorentz
. (8)

According to equation (7), the normal core current has its transverse velocity component,
vcy , as well as its longitudinal component,vcx , identical to those of the BS model. Both
components in equation (7) are depicted in figure 3.
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3. Transverse entropy flow around the vortex core

While investigating the relation between the flux flow resistivity and the temperature, Clem
[5] proposed an entropy flow from the trailing to the leading edge of the moving vortex core.
Using the local continuity equation of the entropy, Clem determined the local temperature
around the core as

T1(x, y) = −T0

[
avL(Sn − Ss)
(Kn +Ks)

]
T=T0

×


y

a
if x2+ y2 < a2

ay

x2+ y2
if x2+ y2 > a2.

(9)

Here T0 is the temperature of the core in the absence of vortex motion,Sn (Ss) is the
entropy of the normal (superconducting) region andKn (Ks) is the thermal conductivity
of the normal (superconducting) region. From equation (9), we can deduce the transverse
thermal gradients parallel to the vortex velocity. This gradients make the transverse entropy
flow possible and give rise to the energy dissipation through irreversible entropy production
[7]. Using equation (9), we estimate the temperature difference between the leading and
the trailing edges as

1T ≡ T1(x, y + a)− T1(x, y) ' T0

(
SnvLa

Kn

)
. (10)

Here we consider a low-temperature limit nearT ' 0 in which the entropy and the thermal
conductivity of the superconducting region are negligible.

In what follows, we will calculate the transverse energy flux using our generalized BS
model. The transverse energy flux through the normal core can be written using equation
(7) as

1Qin,y

1t
= 2nvcyε0a (11)

wheren is the density of normal electrons in the core andε0 the energy of a normal electron
(an excited quasiparticle). If the temperature is not too low, there exists transverse energy
flux outside the normal core due to the flow of thermally excited quasiparticles. Thus, using
the normal current velocity field forr > a in equation (5), we obtain the energy flux from
the trailing to the leading edge of the core as

1Qout,y

1t
= 2

∫ ∞
a

vn(r > a) · y dx = h̄τvT
ma

nn(T )ε0. (12)

Then the total transverse energy flux is

1Q

1t
= 1Qin,y

1t
+ 1Qout,y

1t
= 2(nvcy + nnvn0)ε0a (13)

wherevn0 ≡ h̄τvT /2ma2. This result shows that the transverse energy flux depends on the
velocities of the transverse normal core current,vcy , and the external transport current,vT .
Unlike the result in equation (13), the transverse energy flux in the BS model is zero.

In equation (13), the energy flux is driven by the electric field associated with the
vortex motion, while it is driven by the temperature gradients (the thermal force) in the
Clem model. Thus in order to compare with the result of the Clem model, we convert our
electric transverse force into equivalent thermal gradients. In terms ofKn andKs , we may
write the transverse thermal gradients corresponding to equation (13) as

y · ∇T = − 1

Kn +Ks
1Q

1t
. (14)
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From equation (14), we determine the thermal difference between the leading and the trailing
edges at a low-temperature limit nearT ' 0 as

1T ' nvcyε0a

Kn
= T0

nvcyε0a

T0Kn
= T0

Snvcya

Kn
. (15)

Here we define the entropy density of the normal core asSn = nε0/T0 using the energy and
density of normal electrons. The velocity of the transverse core current,vcy , is associated
with vT as shown in equation (7). We may write the following relation between the velocities
of the transport current and the vortex:

vT = αvL (16)

because the velocity of the vortex can be approximated as the linear response to the transport
current in the flux flow regime. According to the BS model [1], the sample-dependent
constantα is given byα = ηc/neφ, whereη is the viscous drag coefficient andφ is the
flux quantum. Then we can rewrite equation (15) as

1T ' (αβωc2τ)T0
SnvLa

Kn
. (17)

The thermal force associated with the thermal difference in equation (17) and the electric
force (e/m)ENCD generate equal transverse entropy flux for the moving vortex. Equation
(10) of the Clem model and equation (17) of our generalized BS model are qualitatively
similar; i.e. both depend on the entropy and the thermal conductivity of the normal core.
However, only our expression in equation (17) shows a dependence on the sample-dependent
properties such as the mean free scattering time of excited quasiparticles,τ , the relative
strength of the pinning force and the Lorentz force,β, and the constant of proportionality
between the velocities of the driving transport current and the vortex,α.

4. Conclusions

We studied the entropy flow in the vicinity of a moving vortex core and explained the Clem
model within the framework of the BS model. While the BS model describes the longitudinal
flow of excited quasiparticles, the Clem model is based on the transverse flow. By using our
generalized BS model, we showed that these seemingly inconsistent quasiparticle flows of
the two models can be understood in a unified manner as the motion of excited quasiparticles
due to the electric force field generated by the vortex motion. From the transverse flow of
quasiparticles in our generalized BS model, we determined the transverse entropy flux and
the associated temperature difference between the trailing and the leading edges of the core.
These quantities from our generalized BS model showed qualitative agreement with those
of the Clem model.
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